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Method

o MotionNet: Autoregressive cVAE that generates the pose in a /Ex||\s/t||?tll\(/|) rgNedt tD?ta m
sequential manner. g MoCap datasets are dominated by
e GoalNet: cVAE that predicts the goal position and orientation chom9tlon rarely capture the scene, and lack
on the desired object. diversity. . . Quantitative Evaluation
e Path Planning Module: Use the A-star algorithm to compute e Our dataset has about 700 minutes of motion Metric Sit Carry
a collision-free path to the goal. covering diverse styles of sitting, lying down, SAMP | NSM | SAMP | NSM

walking, running, and idling. Prec.is.ion PE (cm) | 15.97 | 16.95 4.58 4.72
e Track the body and the object. Precision RE (deg) | 5.38 2.32 1.78 1.65

o Efficient augmentation pipeline Execution Time (sec) | | 12.93 | 10.26 | 13.29 | 12.82
K 9 i j FD | 6.20 | 4.21 | 10.17 | 7.31
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e Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. Neural state machine for Penetration (%) | 3.8 8.11 3.62 8.45
character-scene interactions. 2019.




